Social Choice and Mechanism Design: Quadratic Voting

Ben Norman Game Theory Presentation

Talk Structure

- Learning Goals
- Motivation
- Intro to Quadratic Voting
- Some Properties
- Questions and Discussion

Learning Goals:

Articulate:

- why Quadratic Voting is Quadratic
- Not linear voting
- Not exponential voting

Applications:

- Describe and implement Quadratic Voting
- Use Quadratic Voting to efficiently make collective decisions
- Use Quadratic Voting to poll and understand others true preferences
- Use Quadratic Voting to elicit RL agent preferences? Hmm...

Stretch Goals:

- Understanding all Politics

Preference Strength Matters

There are several decisions we might make by voting:

- Scheduling an Exam
- Building a Road
- Electing a Candidate
- Building a Lighthouse

What do these have in common?

- Preference Strength Matters
- Need Preferences / Utilities to choose efficient social outcomes

One Approach:

Ask People for their preferences?
Problem:

- People will lie. They will overstate
- Saw this with voting too

> True Preference: $A>B \gg C$, but A has no change of winning... Stated Preference: $\mathrm{B}>A \gg C$

Solution?

- VCG
- Make Truthful Reporting a Dominant Strategy!

Example of VCG:

Let's schedule the exam!

- disclaimer: we are not actually scheduling the exam

Two Options:

Tomorrow!

Reasonable Time

The class: a diverse range of reasonable bids
Kevin: 10 billion million dollars for tomorrow
Narun: 10 billion million dollars for tomorrow

Problems with VCG

- Collusion
- What we saw last slide
- Only takes two to get whatever they want!
- Payment
- We need to charge and pay people. This is complicated!
- Could you lie?
- Could you default?
- Opacity
- Are people going to understand the mechanism?
- Are people going to trust us?
- We charge them, we pay them, are these payments transparent?

Quadratic Voting

The Simplest Case:

- We give each person K 'voice credits'
- We have N binary propositions to vote on
- We can vote positively 'yay' or negatively 'nay' on any of these propositions multiple time
- The cost to m_{i} votes one way or the other, on a proposition $i \in N$, is m_{i}^{2}

Let's Try It!

Favorite Fruit:
Durian
Dragon Fruit
Orange
Kiwi
Apple
Strawberry
Mango

Banana

Idea Behind Quadratic Voting

The cost for each vote scales with your preferences

We have a proposition i,

- a prior p_{i} of how pivotal a vote is for proposition i
- a value u_{i} of preferring the outcome we want of of proposition i
- a linear utility of keeping our voice tokens for later / other propositions

Then the number of votes we should cast on proposition i is $\propto \boldsymbol{p}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$

Proof of This

Imagine buying votes one by one

If we have bought v votes, the cost for an additional vote is $(v+1)^{2}-v^{2}=$ $2 v+1$ this is roughly $\propto v$
Hence,

- if $p_{i} v_{i}>c\left(2 u_{i}+1\right)$, we should buy another vote
- if $p_{i} v_{i}<c\left(2 u_{i}+1\right)$, we should not buy another vote

Thus, assuming we are rational, we should buy votes so that $\mathrm{c}(2 v+1) \approx$ $p_{i} u_{i}$

Applications

Taiwanese Government: Voting for the Presidential Hackathon

Colorado State Government to Allocate Budget

- Started in 2019
- Still using it

Voting in Civilization 6: Gathering Storm "World Council"

Benefits:

Claims:

- More resistant to collusion
- Simpler
- Asymptotically Efficient for Large numbers of Voters

Any Questions?

Aside: tyrannies of the majority and extreme

A tyranny of the Majority:

- (Weak) Majority preference causes less efficient overall outcome A tyranny of the Extremists:
- Intense Minority Preference causes less efficient overall outcome

We want to balance the minority and majority

How we cost our votes corresponds to this.

- Rapidly increasing cost per vote \longrightarrow Tyranny of the Majority
- Limits to 1p1v
- Constant cost per vote \rightarrow Tyranny of the Minority
- E.g. Lobbying by Corporations

Resources:

Weyl, Eric Glen, The Robustness of Quadratic Voting (October 23, 2016). Public Choice, Forthcoming, Available at SSRN:
https://ssrn.com/abstract=2571012 or http://dx.doi.org/10.2139/ssrn. 2571012
Lalley, Steven and Weyl, Eric Glen, Quadratic Voting: How Mechanism Design Can Radicalize Democracy (December 24, 2017). American Economic Association Papers and Proceedings, Vol. 1, No. 1, 2018, Available at SSRN: https://ssrn.com/abstract=2003531 or http://dx.doi.org/10.2139/ssrn.2003531

Talk: The Robustness of Quadratic Voting
Talk: Glen Weyl: Reimagining Democracy with Quadratic Funding and Quadratic Voting

